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GENERATION OF NONLINEAR WAVES ON A VISCOELASTIC COATING

IN A TURBULENT BOUNDARY LAYER

UDC 532.526; 537.86.187V. P. Reutov and G. V. Rybushkina

Self-induced excitation of periodic nonlinear waves on a viscoelastic coating interacting with
a turbulent boundary layer of an incompressible flow is studied. The response of the flow to
multiwave excitation of the coating surface is determined in the approximation of small slopes.
A system of equations is obtained for complex amplitudes of multiple harmonics of a slow
(divergent) wave resulting from the development of hydroelastic instability on a coating with
large losses. It is shown that three-wave resonant relations between the harmonics lead to
the development of explosive instability, which is stabilized due to the deformation of the mean
(over the wave period) shear flow in the boundary layer. Conditions of soft and hard excitation
of divergent waves are determined. Based on the calculations performed, qualitative features
of excitation of divergent waves in known experiments are explained.

Introduction. The problem of self-induced excitation (generation) of waves on elastic coatings inter-
acting with fluid flows is of interest because of the search for methods of decreasing hydrodynamic resistance
(see, for example, [1–3]). This phenomenon is also important for biomechanical fluid flows [4]. Two ba-
sic types of hydroelastic (flow-induced) instability were found within the framework of the linear theory:
traveling-wave flutter and divergence [2]. The quasistatic instability (divergence) arises in the homogeneous
potential flow past the coating, whereas the appearance of the flutter is conditioned by irreversible transfer
of energy from the shear flow in the boundary layer to the surface. A strongly dissipative viscoelastic coating
and an ideal (elastic) coating were used in [5, 6] to observe divergence and flutter, respectively, in a flow with
a turbulent boundary layer (TBL).

Gad-el-Hak et al. [5] identified divergence as a quasistatic instability with the phase velocity of waves
smaller than 5% of the main flow velocity. In this case, nonsinusoidal two-dimensional waves of high amplitude
with spinous elevations of the surface appeared as soon as the flow velocity became greater than the critical
value. The goal of the present work is to find the mechanism of generation of such waves.

Generation of hydroelastic waves on a bounded elastic plate was numerically simulated by Lucey and
Carpenter [7], and the potential flow model without the boundary layer was used. Reutov and Rybushkina [8]
obtained the Landau equation for monochromatic waves on elastic and viscoelastic coatings interacting with
the TBL. Nonlinear processes of competition of “fast” waves excited during the development of the flutter-
type instability were studied in [9]. Due to the low phase velocity of slow (divergent) waves, conditions for
synchronization of the phases of multiple harmonics arise, which may lead to the formation of nonlinear
waves. In the present paper, the quasilinear theory of TBL interaction with a wavy surface, which was
constructed in [10], is supplemented by taking into account resonant interactions of multiple harmonics of a
periodic divergent wave. As in [8–10], the main small parameter is the surface slope. This weakly nonlinear
theory allows one to study the generation of hydroelastic waves only for rather small supercritical values.
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Nevertheless, its construction seems to be useful for understanding the role of the TBL in mechanisms of
limiting hydroelastic instability.

1. Wave Divergence of a Viscoelastic Coating in the TBL (Linear Problem). We consider
TBL interaction with a wave flexure on an elastic coating. The external region of the TBL merges with
a uniform potential flow without the pressure gradient. The one-layer coating made of an incompressible
viscoelastic material of density ρs and shear modulus G has a thickness d. The propagation velocity of plane
transverse waves in this material is ct =

√
G/ρs. The surface-flexure period λ is assumed to be small as

compared to the scale of TBL expansion. As is shown in [8, 9], the interaction of such a flexure with the
TBL may be assumed to be local.

To describe periodic two-dimensional perturbations on the coating surface, we use a model equation
that is a modification of the Kármán equation in the theory of weak flexure of thin plates:

K̂w −
[
s

λ

λ∫
0

(wx′)2 dx′
]
wxx = −p. (1)

Here w(x, t) is the displacement of the surface level toward the y axis at the point x at the time t, p(x, t) is
the surface-pressure perturbation, K̂ is the linear integrodifferential operator, and s = Gd/(1 − µ) (µ ≈ 0.5
is Poisson’s ratio for an incompressible viscoelastic layer).

The available experimental data on excitation of hydroelastic waves in the TBL refer to one-layer
coatings. In this case, the spectral representation of the operator K̂ [for excitations of the form exp(ikx−iωt)]
may be written as follows [11]:

K̂(Ω, α) =
ρsc

2
t

d
[m̄(α2c̄2

0 − Ω2)− iγtb0Ω]. (2)

Here α = kd is the dimensionless wavenumber, Ω = ωd/ct is the dimensionless cyclic frequency, and γt is
the dimensionless parameter of losses; m̄, c̄0, and b0 depend only on α. In the case of a strongly dissipative
coating considered below, formula (2) is obtained rigorously (in the asymptotic sense) by expansion in terms
of the parameter 1/(αγt)� 1.

For m̄ = const, b0 = const, and an appropriate definition of c̄0, relation (2) describes the complex
elasticity of a thin plate (or membrane) with a dimensionless surface density m̄ and the coefficient of losses
γtb0. In the range of wavenumbers α > 1 (typical of the experiments of [5]), the changes in m̄ and b0 are
comparatively small, and their rapid increase begins at small α (there is a singular increase as α→ 0).

Thus, in the linear problem with definition of K̂ in the form of (2), Eq. (1) describes the surface
deformation of an actual viscoelastic layer. In passing to the nonlinear equation (1), the viscoelastic layer is
considered as a thin free plate of thickness d whose parameters change in accordance with (2).

Pressure perturbations in the form of a traveling sinusoidal wave, which arise in the TBL with surface
flexure, were found in the linear approximation in [11] on the basis of the flow model with vortex viscosity
(see also [8]). A quasipotential approximation for the complex elasticity of the flow was proposed. For α > 0,
this approximation reduces to a relation between the complex amplitudes of pressure pωk and flexure wωk of
the form

pωk ' kρ0U
2
[
−
( ω

kU
− f

)2
+ δZ(0)

]
wωk, (3)

where f < 1 is the parameter of reduction of static elasticity of the potential flow, δZ(0) is the resistive
component of elasticity, and U is the velocity of the uniform flow. Reutov and Rybushkina [11] gave an
analytical approximation of the dependence of f on the dimensionless wavenumber k̄ = kδ∗ and local Reynolds
number Re = Uδ∗/ν0 (δ∗ is the TBL displacement thickness and ν0 is the kinematic viscosity of the liquid).

Ignoring the nonlinear term in (1) and using (2) and (3), we obtain the dispersion relation for hydroe-
lastic waves in the form [11]

αm̄(Ω2 − α2c̄2
0) + q(Ω− αfV )2 + iγtb0αΩ− qV 2α2δZ(0) = 0, (4)
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Fig. 1

where V = U/ct is the dimensionless flow velocity and q = ρ0/ρs. For a viscoelastic coating, we have
γtb0 = 6–600, which allows us to seek the solution of Eq. (4) in the form of expansion in εα = 1/(γtb0)� 1 [11].
With accuracy to terms of order εα, we obtain the relation for the frequency of weakly decaying (or weakly
growing) waves

Ω = iαεα(qf2V 2 − αm̄c̄2
0 − qV 2δZ

(0)
0 ), (5)

where δZ(0)
0 = δZ(0)

∣∣∣
Ω=0

. Note that Eqs. (4) and (5) contain implicitly the parameters Ret = ctδ∗/ν0 and

d/δ∗ [11].
Figure 1 shows the dependence of the instability growth rate Im Ω on α for different flow velocities

(curves 1–3 correspond to V = 5.6, 6.1, and 6.6, respectively). Hereinafter, we give the calculation results for
the flow–coating system with the parameters q = 1, γt = 15, Ret = 350, and d/δ∗ = 0.78 (see [11]). Similar
results were obtained for different values of γt, Ret, and d/δ∗.

As follows from Fig. 1, the instability arises when the flow velocity passes through the critical value
Vcr ' 5.6. A wave with a wavenumber αcr ' 2 (wavelength λcr = 2πd/αcr) is excited at the boundary of
instability origination. The phase velocity of growing waves is small as compared to the flow velocity, which
allows us to consider this instability as wave divergence [2].

Note that the resistive component of the TBL response δZ(0) has a weak effect on the behavior of the
curves plotted in Fig. 1 and also on the magnitude of the critical flow velocity Vcr. In fact, the instability
arises when the static stability of the flow exceeds the static stability of the coating with arbitrary losses in
the coating. This behavior of the flow–coating system is a consequence of the dominating contribution of the
dissipative component [term iγtb0Ω in (2)] to the dynamic elasticity of the coating. In this case, the influence
of reactive and resistive components of elasticity of the flow and coating on wave propagation is oppositely
different for coatings with low and high losses. In particular, the real part of δZ(0), which determines the
wave-frequency shift in the case of low losses in the coating, makes a contribution to the decay (amplification)
of waves for a strongly dissipative coating. Obviously, similar changes should also occur for nonlinear elasticity
of the flow and coating.

2. Derivation of a Closed System of Equations for the Amplitudes of Surface-Flexure
Harmonics. To determine the nonlinear response of the TBL to the wave flexure of the surface, Reutov [10]
used a quasilinear approximation, where the main manifestation of nonlinearity is related to the deformation
of the mean (over the wave period) flow in the TBL. Within the framework of this approximation, the Landau
equation was obtained [8]. As was noted in [10], the contribution of the second harmonic of hydrodynamic
fields to the nonlinear response is small under the condition that this harmonic either is absent in the surface
flexure or has an order kã� 1 as compared to the first harmonic (k and ã are the characteristic values of the
wavenumber and surface-deflection amplitude). Nevertheless, this condition may be violated in the presence
of the resonance of phase velocities of the first and second harmonics. In the case of divergent waves whose
phase velocity is small for εα � 1, the resonance conditions are satisfied not only for the second harmonic
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but also for higher multiple harmonics. This may lead to generation of divergent waves of a significantly
nonsinusoidal shape.

In deriving the equation for the amplitudes of harmonics of a nonlinear wave, one should take into
account the resonant interaction between the harmonics in the quasilinear model of the TBL response. As
in [8–10], we use the approximation of weak nonlinearity, assuming the surface slope to be small: kã � 1.
We pass in (1) to the dimensionless time t1 = ctt/d, coordinate x1 = x/d, and surface elevation w̄ = w/d.
We assume in (1) that p = pq.p. + pn.l., where pq.p. is the quasipotential linear response of the flow to the
wave flexure of the surface determined by formula (3) in the spectral representation and pn.l. is the nonlinear
component of the response.

To pass from the spectral relations (2) and (3) to space–time expressions, we use the formal substi-
tutions Ω → Ω̂ = i∂/∂t1 and α → α̂ = −i∂/∂x1. First, we obtain the equation of excitation of multiple
harmonics by the “nonlinear force” pn.l., considering it as a given function of x1 and t1. The surface flexure
is represented in the form of a set of harmonics:

w̄(x1, t1) =
∑
α

aα(εαt1) eiαx1 , (6)

where aα is the normalized complex amplitude of the flexure harmonic with wavenumber α. Since w̄ is a
real quantity, the condition aα = a∗−α is satisfied (the asterisk denotes complex conjugation). In the case of
multiple harmonics, we have α = nα1, where n = 1, 2, 3, . . . is the number of the harmonic and α1 is the
wavenumber of the first harmonic (the length of the nonlinear wave is λ = 2πd/α1).

Substituting (6) into (1) and retaining terms of the order of unity, we obtain the following equation of
excitation of harmonics with α > 0:

daα
dt1

= γαaα − εα
[∑
β>0

K
(1)
αβ |aβ|

2aα +
2
ρsc2

t

(pn.l.)α

]
. (7)

Here

γα = αεα(qf2V 2 − αm̄c̄2
0 − qV 2δZ

(0)
0 ), (pn.l.)α =

1
λ

λ∫
0

pn.l.e−iαx1 dx1

∣∣∣
Ω̂=0

, K
(1)
αβ =

α2β2

2(1− µ)
.

We note that the nonlinear forces in this approximation are found with ignored derivatives with respect to t
in hydrodynamic equations (quasisteady flow). In passing to (7), the condition of small slopes of the surface
was not used in the explicit form, but it is present implicitly as one of the conditions of applicability of the
theory of weak flexure of thin plates.

The quasilinear TBL response in the case of a multiwave (multiharmonic) flexure of the surface was
determined in [9] on the basis of generalization of the monoharmonic quasilinear theory [8]. The numerical
scheme proposed in [9] allows one to calculate the expansion for surface-pressure harmonics of zero frequency,
which has the following form:

pk =
[
Z(0)(k̄) +

∑
k0>0

Z(1)(k̄, k̄0)|k0ãk0 |2
]
ãk. (8)

Here ãk = aαd are the nonnormalized complex amplitudes of the flexure harmonics, Z(0) is the complex
linear elasticity of the flow [which coincides with the total value of the coefficient at wωk in the right part
of Eq. (3)], and Z(1)(k̄, k̄0) are the coefficients of the matrix of mutual nonlinear elasticities of the flow for
harmonics with wavenumbers k̄ and k̄0 = k0δ∗. We note that a relation similar to (8) may also be written for
the coating response excited by an external pressure field; instead of Z(1), it will contain the quantities K(1)

αβ

from (7) (see [9]).
Three-wave resonant relations between the flexure harmonics are determined by second-order terms of

the expansion pn.l. in the small amplitudes of the harmonics. Their calculation for a TBL with vortex viscosity
is related to a substantial complication of the numerical procedure described in [9]. At the same time, the
estimates of the characteristic parameters of the TBL and divergent waves show that the penetration depth
of the oscillating (with a wave period) flow into the TBL k−1 is significantly greater than the thickness of
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the buffer TBL region yb ' 30ν0/u∗ (u∗ is the dynamic velocity of the TBL) and than the length of decay
of vortex perturbations, which is evaluated as

√
νb/(kUb) (νb and Ub are the values of effective viscosity and

flow velocity for y = yb). Note that the layers where the phase velocities of the harmonics of the divergent
wave coincide with the flow velocity are located deep in the viscous sublayer.

Taking into account these features of divergent waves, we use the model of the potential flow with a
reduced velocity U → f1U (f1 < 1 is the coefficient of reduction of the free-stream velocity) to calculate the
second-order terms of the expansion of pn.l.. We assume that f1 = Ub/U ' 0.5, which is in agreement with
the value of the coefficient f in formula (3), which has a similar meaning. Being written with accuracy to
second-order terms, the system of equations and boundary conditions for perturbations of the potential ϕ
and the expression for surface pressure take the following form:

ϕxx + ϕyy = 0 (y > 0), f1Uwx − ϕy = −ϕxwx + wϕyy

∣∣∣
y=0

,
(9)

p/ρ0 = −f1U(ϕx + wϕxy)− (1/2)(ϕx)2 − (1/2)(ϕy)2
∣∣∣
y=0

.

We substitute expression (6) for w written in the initial (nonnormalized) variables into (9). Then, with
accuracy to first-order terms, we obtain the expression for potential perturbations:

ϕ = −
∑
k

ikf1U

|k|
ãk eikx−|k|y.

Calculating p with accuracy to second-order terms, we find

pk = ρ0f
2
1U

2

(
− |k|ãk +

∑
k0

Skk0 ãk0 ãk−k0

)
, (10)

where Skk0 = (1/2)[−( |k0|+ |k| )|k − k0| − |kk0|+ k2 + k2
0 − kk0]. Composing pn.l. from the second terms in

expansions (8) and (10) and passing to dimensionless variables, we can transform Eq. (7) to
daα
dt1

= γαaα +
∑
β

σαβaβaα−β −
∑
β>0

Tαβ |aβ|2aα, (11)

where Tαβ = εα(K(1)
αβ + qV 2αβ2Z

(1)
kk0

), σαβ = −(1/2)εαqf2
1V

2(d2Skk0), k = α/d, and k0 = β/d.
System (11) for complex amplitudes of harmonics is known in the theory of nonlinear waves as the

equations of resonant and asynchronous (energetic) interaction of waves (see, for example, [12]). The first
term in the right part determines the growth rates and linear shifts of the harmonic frequencies, the second one
is responsible for the resonant relations between the harmonics, and the third term determines the nonlinear
decay and nonlinear shifts of the harmonic frequencies.

It should be noted that the deformation of the mean flow in the TBL leads to high values of the
coefficients Z(1)

kk0
in expansion (8) (see [9, 10] for more details). Therefore, the contributions of the second-

and third-order terms in Eq. (11) may be comparable for small slopes of the surface for which expansions (8)
and (10) are applicable. Note that there is no such anomaly of Z(1)

kk0
in the case of a purely potential flow

over the surface (because of the absence of the mean-flow deformation).
3. Explosive Instability and Hard Excitation of Nonlinear Divergent Waves. A procedure

for calculating the coefficients Z(1) in expansion (8) for the TBL with vortex viscosity was developed in [9].
Calculations for typical values of k̄ and Re performed on the basis of this procedure showed that the real
parts of Z(1) are always positive. Thus, the dissipative cubic nonlinearity in (11) plays a stabilizing role.

To identify the role of the “resonant” terms in (11), we represent the corresponding sum in the following
form: ∑

β

σαβaβaα−β =
∑

0<β<α/2

σ
(1)
αβaβaα−β +

∑
β>α

σ
(2)
αβaβa

∗
β−α + σ(3)

α a2
α/2. (12)

Here σ(1)
αβ = εαqf

2
1V

2β(α − β), σ(2)
αβ = εαqf

2
1V

2α(β − α), σ(3)
α = (1/8)qα2f2

1V
2, and α = nα1 and β = mα1

(n,m = 1, 2, 3, . . . , N). Summation in the right part of (12) is performed only for positive wavenumbers, and
terms with repeated combinations of amplitudes are eliminated (the last term appears only for even n).
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It follows from the above relations for σ(1)
αβ , σ(2)

αβ , and σ(3)
α that these quantities are real and positive. We

assume that the wave amplitudes are rather small and the cubic terms in (11) may be ignored. It is easily seen
that system (11) with substitution (12) describes the so-called explosive instability of waves [12–15], which is
manifested in the asymptotic solutions of the form aα → Cα/(t1∞ − t1) as t1 → t1∞ [t1∞ ∼ Cα/aα(0) is the
time of “explosion” and Cα = const]. Explosive instability was studied in the theory of plasma waves (see,
for example, [13]), where it was mainly associated with three-wave interactions in media close to conservative
(interaction of waves with different signs of energy). An example of explosive instability in a dissipative
medium is the instability of wave triplets in the boundary layer [14]. An explosive growth of waves due to the
pure dissipative resonant relations between them was found for electromagnetic waves in a waveguide with a
nonlinear leakage current [15].

As was noted above, the dissipative character of the dynamic response of the coating leads to the fact
that reactive nonlinearities of the type of coating elasticity and flow elasticity (determined by the coefficients
K(1) and ReZ(1), respectively) are transformed to dissipative nonlinearities (nonlinear decay) after passing
to equations of bound waves (11). The “quadratic” part of the flow response is also transformed to the
dissipative from the reactive form. Finally, this leads to explosive instability.

A typical feature of explosive instability is the synchronization of the phases of interacting waves for
t1 → t1∞ [12, 13]. It is easily seen that, in the case of multiple harmonics, the phase differences ϕ2 − 2ϕ1,
ϕ3 − ϕ2 − ϕ1, etc., tend to zero (ϕn = arg an, where n is the number of the harmonic). Without loss of
generality, we may assume that ϕn → 0. Thus, in the case of hydroelastic waves, explosive instability should
lead to the formation of nonlinear waves with spinous elevations of the surface. Divergent waves of this
kind were observed in experiments on a viscoelastic coating [5]. A similar process of explosive interaction
of harmonics with the formation of nonlinear electromagnetic waves was observed in a waveguide with a
nonlinear leakage current [15].

Cubic decay stabilizes the explosive instability and leads to a steady regime with a finite amplitude
[12, 15]. Nonlinear shifts of harmonic frequencies also exert a stabilizing effect (contribution of terms of the
order of ImZ(1)). In media with explosive instabilities, hard excitation of waves and the associated hysteresis
phenomenon are possible.

To study the transition from soft to hard excitation of waves, we consider the limiting case of real γα
and Tαβ , where aα are real quantities in the regime of phase synchronization. Let the wavenumber of the first
harmonic α1 be equal to the critical wavenumber αcr (see Fig. 1), the flow velocity be close to the critical
value Vcr, and the second harmonic decay (γ2 < 0). Assuming that |a2| � |a1|, we obtain the following
system for real a1,2:

da1

dt1
= σ12a1a2 − T11a

3
1 + γ1a1,

da2

dt1
= σ2a

2
1 − T21a

2
1a2 − |γ2|a2. (13)

In the steady state (d/dt1 = 0), Eq. (13) becomes

|a1| =
[
r ±

√
r2 + 4γ1T11T21

2T11T21

]1/2

, (14)

where r = σ12σ2 − |γ2|T11. According to (14), soft excitation is observed for r < 0. In this case, the
nonlinear decay of the wave a1 and the linear decay of the wave a2 suppress the explosive growth. Under the
condition r > 0, hard excitation is observed in the region γ1 < 0 with a hysteresis in the dependence of the
steady amplitude on the supercritical value of γ1. It should be taken into account that, for the “nonzero”
equilibrium state (13), which appears for γ1 = 0 and r > 0, the assumption |a2| � |a1| is justified only in
the degenerate case of small r. Obviously, in the absence of this degeneration, a nonlinear wave may appear
already for γ1 → 0; the amplitude of the second and even higher harmonics in this wave is comparable to a1.

To study the excitation of nonlinear waves without restrictions used in deriving Eq. (13), system (11)
was solved numerically. System (11) was written for real variables Re (aα) and Im (aα) and integrated by
the Runge–Kutta method for a finite number of harmonics N . The effect of the choice of the number of
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Fig. 2

harmonics N on calculation results was checked. The calculations were performed for the values of the
parameters given in Sec. 1.

Figure 2a shows the height of surface elevation in the nonlinear wave A = wmax−wmin as a function of
the flow velocity V for the case where the wavenumber of the first harmonic coincides with the critical value
α1 = αcr ≈ 2 (the calculation was performed for N = 4). Regions with a qualitatively different behavior of
the solutions are marked by I–III in Fig. 2a. In this case, soft excitation is observed, which is similar to that
obtained above in the model with two harmonics. For small supercritical values (region I), the excited waves
are close to the sinusoidal shape. In the transitional region II, a rapid growth of multiple harmonics and
periodic beatings are observed (there are no steady waves). With further increase in flow velocity (region III),
a nonlinear wave is formed; its profile is shown in Fig. 2b. Taking into account the rapid jumplike increase
in amplitude A (Fig. 2a), this excitation of nonlinear waves may be called pseudohard.

In the experiments of [5], wave excitation occurred in a different manner. Nonlinear divergent waves
with a large height of surface elevation (A ≈ 0.45) appeared immediately after loss of stability. Reutov and
Rybushkina [8] noted that the length of these waves was approximately twice the critical value λcr predicted
by the linear theory. Thus, using system (11), we studied the excitation of nonlinear waves with a wavelength
2λcr (α1 = αcr/2).

Figure 3a shows the dependence A(V ) obtained for N = 8. For small supercritical values, when the
amplitude of the first harmonic a1 is small as compared to the amplitude of the second harmonic a2, the
behavior of the dependence A(V ) is similar to that in the above-considered case α1 = αcr. Nevertheless,
with increase in the supercritical values, an amplitude jump occurs at V ≈ 6, and a hysteresis in the
dependence A(V ) appears, which corresponds to hard excitation. The increase in time of the total amplitude
Ā = Σα|aα| on both sides of the jump is plotted in Fig. 3b (the solid and dashed curves refer to V = 6.05 and
5.95, respectively). Figure 3c shows the profile of the nonlinear wave for V = 6.05. It follows from the result
presented that soft excitation of the wave with a wavelength of λcr leads to the explosive growth of harmonics;
this leads to the jumplike appearance of a nonlinear wave with a wavelength of 2λcr. Note that the value
A ≈ 0.45 for this wave is in agreement with experimental data. Thus, the main qualitative features of wave
excitation on a viscoelastic coating in the TBL are a consequence of the explosive character of interaction of
multiple harmonics of the nonlinear wave with a period of 2λcr.

Substitution of K(1)
αβ = 0 into the coefficients of Eq. (11) leads to insignificant changes in the calculation

results presented above. This means that, for small supercritical values, the main contribution to instability
saturation is made by the hydrodynamic nonlinearity related to the mean-flow deformation in the TBL. The
dominating role of hydrodynamic nonlinearity is a consequence of the anomaly of numerical values of Z(1)

kk0
.

Soft excitation of a wave with a wavelength of λcr preceding the jumplike appearance of a nonlinear
wave was not observed in the experiments. The reason may be large-scale oscillations of the flow velocity in
the boundary layer, which may induce a strongly expressed unsteadiness of the wave field. In addition, the

1009



Fig. 3

calculations showed that the interval of soft excitation in Fig. 3a decreases with increasing parameter f1 (see
Sec. 2) and vanishes at f1 = 0.71.

The theoretical profile of the excited wave (see Fig. 3c) has a more nonlinear shape (greater ratio of the
wave period to the peak width) than in the experiments; in calculations, the amplitude of the nonlinear wave
increases more slowly with increasing V . The reason for this disagreement of the theoretical and experimental
data may be, in particular, the insufficient adequacy of the quasipotential approximation used for calculating
the coefficients of resonant relations between the harmonics.

Conclusions. The mechanism of excitation of significantly nonlinear divergent waves on a viscoelastic
coating in the TBL of an incompressible flow is considered in this work. As a result of resonant interaction
of multiple harmonics with low phase velocities, the wave profile becomes significantly nonsinusoidal already
for moderate supercritical values. At high losses in the coating, conservative nonlinearities of the type of the
flow and coating elasticity in equations of bound waves are transformed to dissipative nonlinearities. The
dissipative resonant relation between the harmonics leads to their explosive instability. The main reason for
limitation of the explosive growth of waves is the deformation of the mean (over the period of the nonlinear
wave) shear flow in the TBL.

Phase synchronization of multiple harmonics related to the development of explosive instability de-
termines the spinous shape of surface-shear waves. From the viewpoint of the general theory of explosive
instability, the “nonevolutionary” character with increasing supercritical values should be noted. In this case,
the explosive interaction of multiple harmonics leads to the hard excitation of nonlinear waves or stimulates
a fast transition to waves of a significantly nonsinusoidal shape (pseudohard excitation).

Because of the rather strong assumptions accepted, the problem considered is, in fact, a model one.
Nevertheless, the analysis allowed us to explain the main features of excitation of divergent waves in the
experiment: the jumplike origination of nonlinear waves with a typical spinous shape of surface shear and
also the excitation of longer waves than those obtained within the framework of the linear theory of stability.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 97-01-
00183 and 96-15-96593).
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